
CS103 Handout 24

Fall 2012 December 3, 2012

Extra Credit: Practice CS103 Final Exam

This practice exam is worth 5 extra credit points.  We will not give points based on whether or 
not your answers are correct, but rather on whether or not you have made a good-faith effort to 
answer all the questions.  On the honor code, we assume that any answers you submit for these 
problems represent a good, honest effort on your part.

We will not release solutions to this practice exam.  If you have any questions about it, feel free 
to stop by office hours or the review sessions on Saturday or Sunday.  It is perfectly fine to work 
on these problems in a group or even to ask questions about them at the review session, but I 
strongly suggest taking this practice exam under exam conditions.

The final exam is open-book, open-note, open-computer, but closed-network.  This means that if 
you want to have your laptop with you when you take the exam, that's perfectly fine, but you 
must not use a network connection.  You should only use your computer to look at notes you've 
downloaded in advance.

Normally, I would leave extra space between problems so that you would have room to write out 
your answers,  but  to save paper I have tried to  minimize  the amount  of blank space in  this 
handout.  You do not need to bring extra scratch paper to the final exam, but I would suggest 
doing so in case you want to try out various solutions to the problems.  You will have three hours  
to complete this final exam.  There will be 180 total points, which corresponds to roughly one 
point per question.  The exam will be worth 25% of your total grade in this course.

Question Points Grader

(1) Natural Languages (15) /15

(2) Regular Languages (30) /30

(3) Context-Free Languages (30) /30

(4) R and RE Languages (65) /65

(5) P and NP Languages (40) /40

(180) /180

(Note that these points are to give a relative sense of the weights 
on the final exam and have no bearing on extra credit points)

Optional, but due just before you take the final exam.
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Problem 1: Natural Languages (15 points total)

Suppose you are watching a movie with nine friends (meaning that there are ten total people 
present).  During the course of the movie, you and your friends speak a total of 40 words to one 
another.

Prove that at least two people in your group must have spoken exactly the same number of words 
during the movie.

Problem 2: Regular Languages (30 points total)

Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or                       
 w has odd length and has the form On  }

For example, EE  ∈ PARITY, OOOOO  ∈ PARITY, EEEE  ∈ PARITY, and ε  ∈ PARITY, but 
EEE  ∉ PARITY, EO  ∉ PARITY, and OOOO  ∉ PARITY.

(i) Regular Expressions (10 Points)

Write a regular expression for PARITY.

(ii) Finite Automata (10 Points)

Design a DFA that accepts PARITY.

(iii) The Pumping Lemma (10 Points)
 
Consider the following language over the alphabet Σ = {0, 1}:

TWICE = { ww | w  Σ* }∈

For example,  0101  ∈ TWICE,  001001  ∈ TWICE,  1111  ∈ TWICE,  and ε  ∈ TWICE,  but
01  ∉ TWICE.

Using the pumping lemma for regular languages, prove that TWICE is not regular.
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Problem 3: Context-Free Languages (30 points total)

(i) Designing CFGs (10 Points)

On Problem Set 5 and 6, you explored the language ADD over the alphabet { 1,  +, = }, which 
was defined as follows:

ADD = { 1m+1n=1m+n | m, n  ∈ ℕ }

Consider the following generalization of ADD, which we will call  MULTIADD, which consists 
of all strings describing unary encodings of two sums that equal one another.  For example:

1 + 3 = 4 would be encoded as 1+111=1111

4 = 1 + 3 would be encoded as 1111=1+111

2 + 2 = 1 + 3 would be encoded as 11+11=1+111

2+0+2+0=0+4+0 would be encoded as 11++11+=+1111+

0=0 would be encoded as =

Notice that there can be any number of summands on each side of the =, but there should be ex-
actly one = in the string; thus 1=1=1  ∉ MULTIADD.

Write a CFG that generates MULTIADD.

(ii) Designing DPDAs (20 Points)
 
On Problem Set 5, you showed that the language of all strings over Σ = {0,  1} containing the 
same number of copies of the substring  01 and  10 was regular by constructing a DFA for it. 
However, consider the following language:

L = { w  {∈ 0, 1, 2}* | w contains the same number of instances of the substrings 01 and 10 }

The substrings 01 and 10 are allowed to overlap, so 010 and 101 are both in language L.  Other 
examples of strings in L include 012012102102, 000121000, 22, 0212, and ε.

Design a (possibly nondeterministic) PDA for the language L.
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Problem 4: R and RE Languages (65 points total)

(i) Same Difference? (25 Points)
 
Prove or disprove: If L1  ∈ R and L2  ∈ R, then L1 – L2  ∈ R.
Prove or disprove: If L1  ∈ RE and L2  ∈ RE, then L1 – L2  ∈ RE.
 
(ii) Accept Most of the Strings! (20 Points)

 
Consider the language

AMOST = { ⟨M, n  | ⟩ M accepts all strings of length at least n }

Prove that AMOST is undecidable by reducing HALT to it.

(iii) Accept Most of the Strings!  (Take Two) (20 Points)

Prove that AMOST is unrecognizable by reducing AALL from Problem Set 8 to it.  As a re-
minder:

AALL = { ⟨M  | (⟩ ℒ M) = Σ* }
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Problem 5: P and NP (40 points total)

(i) Closure under Complement (15 Points)
 
Prove that P is closed under complementation.  (Hint: Show how to turn a polynomial-time de-
cider for a language L into a polynomial-time decider for the language L)

While we know that P is closed under complementation, it is unknown whether NP is closed un-
der complementation.  The class of problems that are the complements of problems in NP is an 
interesting one, and it is so important that we give it the name co-NP.  Formally, co-NP is the set 
of languages L such that L  ∈ NP.  For example, the language

SAT = { φ  | φ is a satisfiable propositional logic formula }⟨ ⟩

is known to be in NP, while its complement

SAT = { φ  | φ is an unsatisfiable propositional logic formula }⟨ ⟩

is contained in co-NP.

Just as the relation between P and NP is unknown, the relation between NP and co-NP is also 
unknown and is a major open problem in complexity theory.  However, we do know of one inter-
esting result about how P, NP, and co-NP are connected.

(ii) NP and co-NP (10 Points)
 
Prove that if NP ≠ co-NP, then P ≠ NP.
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(iii) What Do We Know? (15 Points)
 
Below are ten statements, some of which are definitely true, some of which are definitely false, 
and some of which are not necessarily true or false (either because the truth of the statement de-
pends on the choice of some particular language, or because the statement depends on an open 
problem such as whether P = NP).  For each of these statements, write a T if the statement is al-
ways true, an F if the statement is always false, and a ? if with what is provided the statement 
cannot be definitively shown to be true or false.

If L  ∈ P, then L  ∈ NP.

If L  ∈ NP, then L  ∈ P.

If L is NP-complete and L' ≤P L, then L'  ∈ P.

If L is NP-complete and L' ≤P L, then L'  ∈ NP.

If L is NP-complete and L' ≤P L, then L'  ∈ NPC.

If 3SAT is decidable in time O(n10), then P = NP.

If 3SAT is not decidable in time O(n10), then P ≠ NP.

There exists an NP language that is not in R.

There exists an NP-complete language that is not in R.

There exists an NP-hard language that is not in R.

 


